Gauss-Jordan matrix inversion: Difference between revisions

From Rosetta Code
Content added Content deleted
m (→‎{{header|Perl}}: add round-trip output)
Line 1,217: Line 1,217:
</pre>
</pre>


=={{header|VBA}}==
{{trans|Phix}}
Uses ToReducedRowEchelonForm() from [[Reduced_row_echelon_form#VBA]]<lang vb>Private Function inverse(mat As Variant) As Variant
Dim len_ As Integer: len_ = UBound(mat)
Dim tmp() As Variant
ReDim tmp(2 * len_ + 1)
Dim aug As Variant
ReDim aug(len_)
For i = 0 To len_
If UBound(mat(i)) <> len_ Then Debug.Print 9 / 0 '-- "Not a square matrix"
aug(i) = tmp
For j = 0 To len_
aug(i)(j) = mat(i)(j)
Next j
'-- augment by identity matrix to right
aug(i)(i + len_ + 1) = 1
Next i
aug = ToReducedRowEchelonForm(aug)
Dim inv As Variant
inv = mat
'-- remove identity matrix to left
For i = 0 To len_
For j = len_ + 1 To 2 * len_ + 1
inv(i)(j - len_ - 1) = aug(i)(j)
Next j
Next i
inverse = inv
End Function
Public Sub main()
Dim test As Variant
test = inverse(Array( _
Array(2, -1, 0), _
Array(-1, 2, -1), _
Array(0, -1, 2)))
For i = LBound(test) To UBound(test)
For j = LBound(test(0)) To UBound(test(0))
Debug.Print test(i)(j),
Next j
Debug.Print
Next i
End Sub</lang>{{out}}
<pre> 0,75 0,5 0,25
0,5 1 0,5
0,25 0,5 0,75 </pre>
=={{header|zkl}}==
=={{header|zkl}}==
This uses GSL to invert a matrix via LU decomposition, not Gauss-Jordan.
This uses GSL to invert a matrix via LU decomposition, not Gauss-Jordan.

Revision as of 12:19, 1 March 2019

Gauss-Jordan matrix inversion

Gauss-Jordan matrix inversion is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Invert matrix   A   using Gauss-Jordan method.

A   being an   n by n   matrix.

C#

<lang csharp> using System;

namespace Rosetta {

   internal class Vector
   {
       private double[] b;
       internal readonly int rows;
       internal Vector(int rows)
       {
           this.rows = rows;
           b = new double[rows];
       }
       internal Vector(double[] initArray)
       {
           b = (double[])initArray.Clone();
           rows = b.Length;
       }
       internal Vector Clone()
       {
           Vector v = new Vector(b);
           return v;
       }
       internal double this[int row]
       {
           get { return b[row]; }
           set { b[row] = value; }
       }
       internal void SwapRows(int r1, int r2)
       {
           if (r1 == r2) return;
           double tmp = b[r1];
           b[r1] = b[r2];
           b[r2] = tmp;
       }
       internal double norm(double[] weights)
       {
           double sum = 0;
           for (int i = 0; i < rows; i++)
           {
               double d = b[i] * weights[i];
               sum +=  d*d;
           }
           return Math.Sqrt(sum);
       }
       internal void print()
       {
           for (int i = 0; i < rows; i++)
               Console.WriteLine(b[i]);
           Console.WriteLine();
       }
       public static Vector operator-(Vector lhs, Vector rhs)
       {
           Vector v = new Vector(lhs.rows);
           for (int i = 0; i < lhs.rows; i++)
               v[i] = lhs[i] - rhs[i];
           return v;
       }
   }
   class Matrix
   {
       private double[] b;
       internal readonly int rows, cols;
       internal Matrix(int rows, int cols)
       {
           this.rows = rows;
           this.cols = cols;
           b = new double[rows * cols];            
       }
       internal Matrix(int size)
       {
           this.rows = size;
           this.cols = size;
           b = new double[rows * cols];
           for (int i = 0; i < size; i++)
               this[i, i] = 1;
       }
       internal Matrix(int rows, int cols, double[] initArray)
       {
           this.rows = rows;
           this.cols = cols;
           b = (double[])initArray.Clone();
           if (b.Length != rows * cols) throw new Exception("bad init array");
       }
       internal double this[int row, int col]
       {
           get { return b[row * cols + col]; }
           set { b[row * cols + col] = value; }
       }        
       
       public static Vector operator*(Matrix lhs, Vector rhs)
       {
           if (lhs.cols != rhs.rows) throw new Exception("I can't multiply matrix by vector");
           Vector v = new Vector(lhs.rows);
           for (int i = 0; i < lhs.rows; i++)
           {
               double sum = 0;
               for (int j = 0; j < rhs.rows; j++)
                   sum += lhs[i,j]*rhs[j];
               v[i] = sum;
           }
           return v;
       }
       internal void SwapRows(int r1, int r2)
       {
           if (r1 == r2) return;
           int firstR1 = r1 * cols;
           int firstR2 = r2 * cols;
           for (int i = 0; i < cols; i++)
           {
               double tmp = b[firstR1 + i];
               b[firstR1 + i] = b[firstR2 + i];
               b[firstR2 + i] = tmp;
           }
       }
       //with partial pivot
       internal bool InvPartial()
       {
           const double Eps = 1e-12;
           if (rows != cols) throw new Exception("rows != cols for Inv");
           Matrix M = new Matrix(rows); //unitary
           for (int diag = 0; diag < rows; diag++)
           {
               int max_row = diag;
               double max_val = Math.Abs(this[diag, diag]);
               double d;
               for (int row = diag + 1; row < rows; row++)
                   if ((d = Math.Abs(this[row, diag])) > max_val)
                   {
                       max_row = row;
                       max_val = d;
                   }
               if (max_val <= Eps) return false;
               SwapRows(diag, max_row);
               M.SwapRows(diag, max_row);
               double invd = 1 / this[diag, diag];
               for (int col = diag; col < cols; col++)
               {
                   this[diag, col] *= invd;
               }
               for (int col = 0; col < cols; col++)
               {
                   M[diag, col] *= invd;
               }
               for (int row = 0; row < rows; row++)
               {
                   d = this[row, diag];
                   if (row != diag)
                   {
                       for (int col = diag; col < this.cols; col++)
                       {
                           this[row, col] -= d * this[diag, col];
                       }
                       for (int col = 0; col < this.cols; col++)
                       {
                           M[row, col] -= d * M[diag, col];
                       }
                   }
               }
           }
           b = M.b;
           return true;
       }
       internal void print()
       {
           for (int i = 0; i < rows; i++)
           {
               for (int j = 0; j < cols; j++)
                   Console.Write(this[i,j].ToString()+"  ");
               Console.WriteLine();
           }
       }
   }

} </lang> <lang csharp> using System;

namespace Rosetta {

   class Program
   {
       static void Main(string[] args)
       {
           Matrix M = new Matrix(4, 4, new double[] { -1, -2, 3, 2, -4, -1, 6, 2, 7, -8, 9, 1, 1, -2, 1, 3 });            
           M.InvPartial();
           M.print();
       }
   }

} </lang>

Output:

-0.913043478260869 0.246376811594203 0.0942028985507246 0.413043478260869 -1.65217391304348 0.652173913043478 0.0434782608695652 0.652173913043478 -0.695652173913043 0.36231884057971 0.0797101449275362 0.195652173913043 -0.565217391304348 0.231884057971014 -0.0289855072463768 0.565217391304348

Go

Translation of: Kotlin

<lang go>package main

import "fmt"

type vector = []float64 type matrix []vector

func (m matrix) inverse() matrix {

   le := len(m)
   for _, v := range m {
       if len(v) != le {
           panic("Not a square matrix")
       }
   }
   aug := make(matrix, le)
   for i := 0; i < le; i++ {
       aug[i] = make(vector, 2*le)
       copy(aug[i], m[i])
       // augment by identity matrix to right
       aug[i][i+le] = 1
   }
   aug.toReducedRowEchelonForm()
   inv := make(matrix, le)
   // remove identity matrix to left
   for i := 0; i < le; i++ {
       inv[i] = make(vector, le)
       copy(inv[i], aug[i][le:])
   }
   return inv

}

// note: this mutates the matrix in place func (m matrix) toReducedRowEchelonForm() {

   lead := 0
   rowCount, colCount := len(m), len(m[0])
   for r := 0; r < rowCount; r++ {
       if colCount <= lead {
           return
       }
       i := r
       for m[i][lead] == 0 {
           i++
           if rowCount == i {
               i = r
               lead++
               if colCount == lead {
                   return
               }
           }
       }
       m[i], m[r] = m[r], m[i]
       if div := m[r][lead]; div != 0 {
           for j := 0; j < colCount; j++ {
               m[r][j] /= div
           }
       }
       for k := 0; k < rowCount; k++ {
           if k != r {
               mult := m[k][lead]
               for j := 0; j < colCount; j++ {
                   m[k][j] -= m[r][j] * mult
               }
           }
       }
       lead++
   }

}

func (m matrix) print(title string) {

   fmt.Println(title)
   for _, v := range m {
       fmt.Printf("% f\n", v)
   }
   fmt.Println()

}

func main() {

   a := matrix{{1, 2, 3}, {4, 1, 6}, {7, 8, 9}}
   a.inverse().print("Inverse of A is:\n")
   b := matrix{{2, -1, 0}, {-1, 2, -1}, {0, -1, 2}}
   b.inverse().print("Inverse of B is:\n")

}</lang>

Output:
Inverse of A is:

[-0.812500  0.125000  0.187500]
[ 0.125000 -0.250000  0.125000]
[ 0.520833  0.125000 -0.145833]

Inverse of B is:

[ 0.750000  0.500000  0.250000]
[ 0.500000  1.000000  0.500000]
[ 0.250000  0.500000  0.750000]

J

Solution:

Uses Gauss-Jordan implementation (as described in Reduced_row_echelon_form#J) to find reduced row echelon form of the matrix after augmenting with an identity matrix. <lang j>require 'math/misc/linear' augmentR_I1=: ,. e.@i.@# NB. augment matrix on the right with its Identity matrix matrix_invGJ=: # }."1 [: gauss_jordan@augmentR_I1</lang>

Usage: <lang j> ]A =: 1 2 3, 4 1 6,: 7 8 9 1 2 3 4 1 6 7 8 9

  matrix_invGJ A
_0.8125 0.125    0.1875
  0.125 _0.25     0.125

0.520833 0.125 _0.145833</lang>

Julia

Works with: Julia version 0.6

Built-in LAPACK-based linear solver uses partial-pivoted Gauss elimination): <lang julia>A = [1 2 3; 4 1 6; 7 8 9] @show I / A @show inv(A)</lang>

Native implementation: <lang julia>function gaussjordan(A::Matrix)

   size(A, 1) == size(A, 2) || throw(ArgumentError("A must be squared"))
   n = size(A, 1)
   M = [convert(Matrix{float(eltype(A))}, A) I]
   i = 1
   local tmp = Vector{eltype(M)}(2n)
   # forward
   while i ≤ n
       if M[i, i] ≈ 0.0
           local j = i + 1
           while j ≤ n && M[j, i] ≈ 0.0
               j += 1
           end
           if j ≤ n
               tmp     .= M[i, :]
               M[i, :] .= M[j, :]
               M[j, :] .= tmp
           else
               throw(ArgumentError("matrix is singular, cannot compute the inverse"))
           end
       end
       for j in (i + 1):n
           M[j, :] .-= M[j, i] / M[i, i] .* M[i, :]
       end
       i += 1
   end
   i = n
   # backward
   while i ≥ 1
       if M[i, i] ≈ 0.0
           local j = i - 1
           while j ≥ 1 && M[j, i] ≈ 0.0
               j -= 1
           end
           if j ≥ 1
               tmp     .= M[i, :]
               M[i, :] .= M[j, :]
               M[j, :] .= tmp
           else
               throw(ArgumentError("matrix is singular, cannot compute the inverse"))
           end
       end
       for j in (i - 1):-1:1
           M[j, :] .-= M[j, i] / M[i, i] .* M[i, :]
       end
       i -= 1
   end
   M ./= diag(M) # normalize
   return M[:, n+1:2n]

end

@show gaussjordan(A) @assert gaussjordan(A) ≈ inv(A)

A = rand(10, 10) @assert gaussjordan(A) ≈ inv(A)</lang>

Output:
I / A = [-0.8125 0.125 0.1875; 0.125 -0.25 0.125; 0.520833 0.125 -0.145833]
inv(A) = [-0.8125 0.125 0.1875; 0.125 -0.25 0.125; 0.520833 0.125 -0.145833]
gaussjordan(A) = [-0.8125 0.125 0.1875; 0.125 -0.25 0.125; 0.520833 0.125 -0.145833]

Kotlin

This follows the description of Gauss-Jordan elimination in Wikipedia whereby the original square matrix is first augmented to the right by its identity matrix, its reduced row echelon form is then found and finally the identity matrix to the left is removed to leave the inverse of the original square matrix. <lang scala>// version 1.2.21

typealias Matrix = Array<DoubleArray>

fun Matrix.inverse(): Matrix {

   val len = this.size
   require(this.all { it.size == len }) { "Not a square matrix" }
   val aug = Array(len) { DoubleArray(2 * len) }
   for (i in 0 until len) {
       for (j in 0 until len) aug[i][j] = this[i][j]
       // augment by identity matrix to right
       aug[i][i + len] = 1.0
   }
   aug.toReducedRowEchelonForm()
   val inv = Array(len) { DoubleArray(len) }
   // remove identity matrix to left
   for (i in 0 until len) {
       for (j in len until 2 * len) inv[i][j - len] = aug[i][j]
   }
   return inv

}

fun Matrix.toReducedRowEchelonForm() {

   var lead = 0
   val rowCount = this.size
   val colCount = this[0].size
   for (r in 0 until rowCount) {
       if (colCount <= lead) return
       var i = r
       while (this[i][lead] == 0.0) {
           i++
           if (rowCount == i) {
               i = r
               lead++
               if (colCount == lead) return
           }
       }
       val temp = this[i]
       this[i] = this[r]
       this[r] = temp
       if (this[r][lead] != 0.0) {
          val div = this[r][lead]
          for (j in 0 until colCount) this[r][j] /= div
       }
       for (k in 0 until rowCount) {
           if (k != r) {
               val mult = this[k][lead]
               for (j in 0 until colCount) this[k][j] -= this[r][j] * mult
           }
       }
       lead++
   }

}

fun Matrix.printf(title: String) {

   println(title)
   val rowCount = this.size
   val colCount = this[0].size
   for (r in 0 until rowCount) {
       for (c in 0 until colCount) {
           if (this[r][c] == -0.0) this[r][c] = 0.0  // get rid of negative zeros
           print("${"% 10.6f".format(this[r][c])}  ")
       }
       println()
   }
   println()

}

fun main(args: Array<String>) {

   val a = arrayOf(
       doubleArrayOf(1.0, 2.0, 3.0),
       doubleArrayOf(4.0, 1.0, 6.0),
       doubleArrayOf(7.0, 8.0, 9.0)
   )
   a.inverse().printf("Inverse of A is :\n")
   val b = arrayOf(
       doubleArrayOf( 2.0, -1.0,  0.0),
       doubleArrayOf(-1.0,  2.0, -1.0),
       doubleArrayOf( 0.0, -1.0,  2.0)
   )
   b.inverse().printf("Inverse of B is :\n")    

}</lang>

Output:
Inverse of A is :

 -0.812500    0.125000    0.187500  
  0.125000   -0.250000    0.125000  
  0.520833    0.125000   -0.145833  

Inverse of B is :

  0.750000    0.500000    0.250000  
  0.500000    1.000000    0.500000  
  0.250000    0.500000    0.750000  

Perl

Included code from Reduced row echelon form task. <lang perl>sub rref {

 our @m; local *m = shift;
 @m or return;
 my ($lead, $rows, $cols) = (0, scalar(@m), scalar(@{$m[0]}));
 foreach my $r (0 .. $rows - 1) {
    $lead < $cols or return;
     my $i = $r;
     until ($m[$i][$lead])
        {++$i == $rows or next;
         $i = $r;
         ++$lead == $cols and return;}
     @m[$i, $r] = @m[$r, $i];
     my $lv = $m[$r][$lead];
     $_ /= $lv foreach @{ $m[$r] };
     my @mr = @{ $m[$r] };
     foreach my $i (0 .. $rows - 1)
        {$i == $r and next;
         ($lv, my $n) = ($m[$i][$lead], -1);
         $_ -= $lv * $mr[++$n] foreach @{ $m[$i] };}
     ++$lead;}

}

sub display { join("\n" => map join(" " => map(sprintf("%6.2f", $_), @$_)), @{+shift})."\n" }

sub gauss_jordan_invert {

   my(@m) = @_;
   my $rows = @m;
   my @i = identity(scalar @m);
   push @{$m[$_]}, @{$i[$_]} for 0..$rows-1;
   rref(\@m);
   map { splice @$_, 0, $rows } @m;
   @m;

}

sub identity {

   my($n) = @_;
   map { [ (0) x $_, 1, (0) x ($n-1 - $_) ] } 0..$n-1

}

my @tests = (

   [
     [ 2, -1,  0 ],
     [-1,  2, -1 ],
     [ 0, -1,  2 ]
   ],
   [
     [ -1, -2, 3, 2 ],
     [ -4, -1, 6, 2 ],
     [  7, -8, 9, 1 ],
     [  1, -2, 1, 3 ]
   ],

);

for my $matrix (@tests) {

   print "Original Matrix:\n" . display(\@$matrix) . "\n";
   my @gj = gauss_jordan_invert( @$matrix );
   print "Gauss-Jordan Inverted Matrix:\n" . display(\@gj) . "\n";
   my @rt = gauss_jordan_invert( @gj );
   print "After round-trip:\n" . display(\@rt) . "\n";} . "\n"

}</lang>

Output:
Original Matrix:
  2.00  -1.00   0.00
 -1.00   2.00  -1.00
  0.00  -1.00   2.00

Gauss-Jordan Inverted Matrix:
  0.75   0.50   0.25
  0.50   1.00   0.50
  0.25   0.50   0.75

After round-trip:
  2.00  -1.00   0.00
 -1.00   2.00  -1.00
  0.00  -1.00   2.00

Original Matrix:
 -1.00  -2.00   3.00   2.00
 -4.00  -1.00   6.00   2.00
  7.00  -8.00   9.00   1.00
  1.00  -2.00   1.00   3.00

Gauss-Jordan Inverted Matrix:
 -0.91   0.25   0.09   0.41
 -1.65   0.65   0.04   0.65
 -0.70   0.36   0.08   0.20
 -0.57   0.23  -0.03   0.57

After round-trip:
 -1.00  -2.00   3.00   2.00
 -4.00  -1.00   6.00   2.00
  7.00  -8.00   9.00   1.00
  1.00  -2.00   1.00   3.00

Perl 6

Works with: Rakudo version 2018.03

Uses bits and pieces from other tasks, Reduced row echelon form primarily.

<lang perl6>sub gauss-jordan-invert (@m where *.&is-square) {

   ^@m .map: { @m[$_].append: identity(+@m)[$_] };
   @m.&rref[*]»[+@m .. *];

}

sub is-square (@m) { so @m == all @m[*] }

sub identity ($n) { [ 1, |(0 xx $n-1) ], *.rotate(-1) ... *.tail }

  1. reduced row echelon form (Gauss-Jordan elimination)

sub rref (@m) {

   return unless @m;
   my ($lead, $rows, $cols) = 0, +@m, +@m[0];
   for ^$rows -> $r {
       $lead < $cols or return @m;
       my $i = $r;
       until @m[$i;$lead] {
           ++$i == $rows or next;
           $i = $r;
           ++$lead == $cols and return @m;
       }
       @m[$i, $r] = @m[$r, $i] if $r != $i;
       my $lv = @m[$r;$lead];
       @m[$r] »/=» $lv;
       for ^$rows -> $n {
           next if $n == $r;
           @m[$n] »-=» @m[$r] »*» (@m[$n;$lead] // 0);
       }
       ++$lead;
   }
   @m

}

sub rat-or-int ($num) {

   return $num unless $num ~~ Rat;
   return $num.narrow if $num.narrow.WHAT ~~ Int;
   $num.nude.join: '/';

}

sub say_it ($message, @array) {

   my $max;
   @array.map: {$max max= [max] |$_».&rat-or-int.comb(/\S+/)».chars};
   say "\n$message";
   $_».&rat-or-int.fmt(" %{$max}s").put for @array;

}

sub to-matrix ($str) { [$str.split(';').map(*.words.Array)] }

my @tests =

 '1 2 3; 4 1 6; 7 8 9',
 '2 -1 0; -1 2 -1; 0 -1 2',
 '-1 -2 3 2; -4 -1 6 2; 7 -8 9 1; 1 -2 1 3',
 '1 2 3 4; 5 6 7 8; 9 33 11 12; 13 14 15 17',
 '3 1 8 9 6; 6 2 8 10 1; 5 7 2 10 3; 3 2 7 7 9; 3 5 6 1 1',
 '-4525/6238  2529/6238 -233/3119 1481/3119 -639/6238;
   1033/6238 -1075/6238  342/3119 -447/3119  871/6238;
   1299/6238  -289/6238 -204/3119 -390/3119  739/6238;
    782/3119  -222/3119  237/3119 -556/3119 -177/3119;
   -474/3119   -17/3119  -24/3119  688/3119 -140/3119';

@tests.map: {

   my @matrix = .&to-matrix;
   say_it( 'Original Matrix:', @matrix );
   say_it( 'Gauss-Jordan Inverted Matrix:', gauss-jordan-invert @matrix );

}</lang>

Output:
Original Matrix:
 1  2  3
 4  1  6
 7  8  9

Gauss-Jordan Inverted Matrix:
 -13/16     1/8    3/16
    1/8    -1/4     1/8
  25/48     1/8   -7/48

Original Matrix:
  2  -1   0
 -1   2  -1
  0  -1   2

Gauss-Jordan Inverted Matrix:
 3/4  1/2  1/4
 1/2    1  1/2
 1/4  1/2  3/4

Original Matrix:
 -1  -2   3   2
 -4  -1   6   2
  7  -8   9   1
  1  -2   1   3

Gauss-Jordan Inverted Matrix:
 -21/23   17/69  13/138   19/46
 -38/23   15/23    1/23   15/23
 -16/23   25/69  11/138    9/46
 -13/23   16/69   -2/69   13/23

Original Matrix:
  1   2   3   4
  5   6   7   8
  9  33  11  12
 13  14  15  17

Gauss-Jordan Inverted Matrix:
   19/184  -199/184     -1/46       1/2
     1/23     -2/23      1/23         0
 -441/184   813/184     -1/46      -3/2
        2        -3         0         1

Original Matrix:
  3   1   8   9   6
  6   2   8  10   1
  5   7   2  10   3
  3   2   7   7   9
  3   5   6   1   1

Gauss-Jordan Inverted Matrix:
 -4525/6238   2529/6238   -233/3119   1481/3119   -639/6238
  1033/6238  -1075/6238    342/3119   -447/3119    871/6238
  1299/6238   -289/6238   -204/3119   -390/3119    739/6238
   782/3119   -222/3119    237/3119   -556/3119   -177/3119
  -474/3119    -17/3119    -24/3119    688/3119   -140/3119

Original Matrix:
 -4525/6238   2529/6238   -233/3119   1481/3119   -639/6238
  1033/6238  -1075/6238    342/3119   -447/3119    871/6238
  1299/6238   -289/6238   -204/3119   -390/3119    739/6238
   782/3119   -222/3119    237/3119   -556/3119   -177/3119
  -474/3119    -17/3119    -24/3119    688/3119   -140/3119

Gauss-Jordan Inverted Matrix:
  3   1   8   9   6
  6   2   8  10   1
  5   7   2  10   3
  3   2   7   7   9
  3   5   6   1   1

Phix

Translation of: Kotlin

uses ToReducedRowEchelonForm() from Reduced_row_echelon_form#Phix <lang Phix>function inverse(sequence mat)

   integer len = length(mat)
   sequence aug = repeat(repeat(0,2*len),len)
   for i=1 to len do
       if length(mat[i])!=len then ?9/0 end if -- "Not a square matrix"
       for j=1 to len do
           aug[i][j] = mat[i][j]
       end for
       -- augment by identity matrix to right
       aug[i][i + len] = 1
   end for
   aug = ToReducedRowEchelonForm(aug)
   sequence inv = repeat(repeat(0,len),len)
   -- remove identity matrix to left
   for i=1 to len do
       for j=len+1 to 2*len do
           inv[i][j-len] = aug[i][j]
       end for
   end for
   return inv

end function

constant test = {{ 2, -1, 0},

                {-1,  2, -1},
                { 0, -1,  2}}

pp(inverse(test),{pp_Nest,1})</lang>

Output:
{{0.75,0.5,0.25},
 {0.5,1,0.5},
 {0.25,0.5,0.75}}

REXX

<lang rexx>/* REXX */ Parse Arg seed nn If seed= Then

 seed=23345

If nn= Then nn=5 If seed='?' Then Do

 Say 'rexx gjmi seed n computes a random matrix with n rows and columns'
 Say 'Default is 23345 5'
 Exit
 End

Numeric Digits 50 Call random 1,2,seed a= Do i=1 To nn**2

 a=a random(9)+1
 End

n2=words(a) Do n=2 To n2/2

 If n**2=n2 Then
   Leave
 End

If n>n2/2 Then

 Call exit 'Not a square matrix:' a '('n2 'elements).'

det=determinante(a,n) If det=0 Then

 Call exit 'Determinant is 0'

Do j=1 To n

 Do i=1 To n
   Parse Var A a.i.j a
   aa.i.j=a.i.j
   End
 Do ii=1 To n
   z=(ii=j)
   iii=ii+n
   a.iii.j=z
   End
 End

Call show 1,'The given matrix' Do m=1 To n-1

 If a.m.m=0 Then Do
   Do j=m+1 To n
     If a.m.j<>0 Then Leave
     End
   If j>n Then Do
     Say 'No pivot>0 found in column' m
     Exit
     End
   Do i=1 To n*2
     temp=a.i.m
     a.i.m=a.i.j
     a.i.j=temp
     End
   End
 Do j=m+1 To n
   If a.m.j<>0 Then Do
     jj=m
     fact=divide(a.m.m,a.m.j)
     Do i=1 To n*2
       a.i.j=subtract(multiply(a.i.j,fact),a.i.jj)
       End
     End
   End
 Call show 2 m
 End

Say 'Lower part has all zeros' Say

Do j=1 To n

 If denom(a.j.j)<0 Then Do
   Do i=1 To 2*n
     a.i.j=subtract(0,a.i.j)
     End
   End
 End

Call show 3

Do m=n To 2 By -1

 Do j=1 To m-1
   jj=m
   fact=divide(a.m.j,a.m.jj)
   Do i=1 To n*2
     a.i.j=subtract(a.i.j,multiply(a.i.jj,fact))
     End
   End
 Call show 4 m
 End

Say 'Upper half has all zeros' Say Do j=1 To n

 If decimal(a.j.j)<>1 Then Do
   z=a.j.j
   Do i=1 To 2*n
     a.i.j=divide(a.i.j,z)
     End
   End
 End

Call show 5 Say 'Main diagonal has all ones' Say

Do j=1 To n

 Do i=1 To n
   z=i+n
   a.i.j=a.z.j
   End
 End

Call show 6,'The inverse matrix'

do i = 1 to n

 do j = 1 to n
   sum=0
   Do k=1 To n
     sum=add(sum,multiply(aa.i.k,a.k.j))
     End
   c.i.j = sum
   end
 End

Call showc 7,'The product of input and inverse matrix' Exit

show:

 Parse Arg num,text
 Say 'show' arg(1) text
 If arg(1)<>6 Then rows=n*2
              Else rows=n
 len=0
 Do j=1 To n
   Do i=1 To rows
     len=max(len,length(a.i.j))
     End
   End
 Do j=1 To n
   ol=
   Do i=1 To rows
     ol=ol||right(a.i.j,len+1)
     End
   Say ol
   End
 Say 
 Return

showc:

 Parse Arg num,text
 Say text
 clen=0
 Do j=1 To n
   Do i=1 To n
     clen=max(clen,length(c.i.j))
     End
   End
 Do j=1 To n
   ol=
   Do i=1 To n
     ol=ol||right(c.i.j,clen+1)
     End
   Say ol
   End
 Say 
 Return

denom: Procedure

 /* Return the denominator */
 Parse Arg d '/' n
 Return d

decimal: Procedure

 /* compute the fraction's value */
 Parse Arg a
 If pos('/',a)=0 Then a=a'/1'; Parse Var a ad '/' an
 Return ad/an

gcd: procedure /**********************************************************************

  • Greatest commn divisor
                                                                                                                                            • /
 Parse Arg a,b
 If b = 0 Then Return abs(a)
 Return gcd(b,a//b)

add: Procedure

 Parse Arg a,b
 If pos('/',a)=0 Then a=a'/1'; Parse Var a ad '/' an
 If pos('/',b)=0 Then b=b'/1'; Parse Var b bd '/' bn
 sum=divide(ad*bn+bd*an,an*bn)
 Return sum

multiply: Procedure

 Parse Arg a,b
 If pos('/',a)=0 Then a=a'/1'; Parse Var a ad '/' an
 If pos('/',b)=0 Then b=b'/1'; Parse Var b bd '/' bn
 prd=divide(ad*bd,an*bn)
 Return prd

subtract: Procedure

 Parse Arg a,b
 If pos('/',a)=0 Then a=a'/1'; Parse Var a ad '/' an
 If pos('/',b)=0 Then b=b'/1'; Parse Var b bd '/' bn
 div=divide(ad*bn-bd*an,an*bn)
 Return div

divide: Procedure

 Parse Arg a,b
 If pos('/',a)=0 Then a=a'/1'; Parse Var a ad '/' an
 If pos('/',b)=0 Then b=b'/1'; Parse Var b bd '/' bn
 sd=ad*bn
 sn=an*bd
 g=gcd(sd,sn)
 Select
   When sd=0 Then res='0'
   When abs(sn/g)=1 Then res=(sd/g)*sign(sn/g)
   Otherwise Do
     den=sd/g
     nom=sn/g
     If nom<0 Then Do
       If den<0 Then den=abs(den)
       Else den=-den
       nom=abs(nom)
       End
     res=den'/'nom
     End
   End
 Return res

determinante: Procedure /* REXX ***************************************************************

  • determinant.rex
  • compute the determinant of the given square matrix
  • Input: as: the representation of the matrix as vector (n**2 elements)
  • 21.05.2013 Walter Pachl
                                                                                                                                            • /
 Parse Arg as,n
 Do i=1 To n
   Do j=1 To n
     Parse Var as a.i.j as
     End
   End
 Select
   When n=2 Then det=subtract(multiply(a.1.1,a.2.2),multiply(a.1.2,a.2.1))
   When n=3 Then Do
     det=multiply(multiply(a.1.1,a.2.2),a.3.3)
     det=add(det,multiply(multiply(a.1.2,a.2.3),a.3.1))
     det=add(det,multiply(multiply(a.1.3,a.2.1),a.3.2))
     det=subtract(det,multiply(multiply(a.1.3,a.2.2),a.3.1))
     det=subtract(det,multiply(multiply(a.1.2,a.2.1),a.3.3))
     det=subtract(det,multiply(multiply(a.1.1,a.2.3),a.3.2))
     End
   Otherwise Do
     det=0
     Do k=1 To n
       sign=((-1)**(k+1))
       If sign=1 Then
         det=add(det,multiply(a.1.k,determinante(subm(k),n-1)))
       Else
         det=subtract(det,multiply(a.1.k,determinante(subm(k),n-1)))
       End
     End
   End
 Return det

subm: Procedure Expose a. n /**********************************************************************

  • compute the submatrix resulting when row 1 and column k are removed
  • Input: a.*.*, k
  • Output: bs the representation of the submatrix as vector
                                                                                                                                            • /
 Parse Arg k
 bs=
 do i=2 To n
   Do j=1 To n
     If j=k Then Iterate
     bs=bs a.i.j
     End
   End
 Return bs

Exit: Say arg(1)</lang>

Output:

Using the defaults for seed and n

show 1 The given matrix
 10  3  8  6  3  1  0  0  0  0
  5  7  8  8  2  0  1  0  0  0
  4 10  5  4  7  0  0  1  0  0
  9  4  5  3  3  0  0  0  1  0
  6  3  3  3  7  0  0  0  0  1

show 2 1
    10     3     8     6     3     1     0     0     0     0
     0    11     8    10     1    -1     2     0     0     0
     0    22   9/2     4  29/2    -1     0   5/2     0     0
     0  13/9 -22/9  -8/3   1/3    -1     0     0  10/9     0
     0     2    -3    -1  26/3    -1     0     0     0   5/3

show 2 2
      10       3       8       6       3       1       0       0       0       0
       0      11       8      10       1      -1       2       0       0       0
       0       0   -23/4      -8    25/4     1/2      -2     5/4       0       0
       0       0 -346/13 -394/13   20/13  -86/13      -2       0  110/13       0
       0       0   -49/2   -31/2   140/3    -9/2      -2       0       0    55/6

show 2 3
        10         3         8         6         3         1         0         0         0         0
         0        11         8        10         1        -1         2         0         0         0
         0         0     -23/4        -8      25/4       1/2        -2       5/4         0         0
         0         0         0  1005/692 -4095/692 -1335/692  1085/692      -5/4  1265/692         0
         0         0         0   855/196    395/84  -305/196     75/49      -5/4         0  1265/588

show 2 4
           10            3            8            6            3            1            0            0            0            0
            0           11            8           10            1           -1            2            0            0            0
            0            0        -23/4           -8         25/4          1/2           -2          5/4            0            0
            0            0            0     1005/692    -4095/692    -1335/692     1085/692         -5/4     1265/692            0
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

Lower part has all zeros

show 3
           10            3            8            6            3            1            0            0            0            0
            0           11            8           10            1           -1            2            0            0            0
            0            0         23/4            8        -25/4         -1/2            2         -5/4            0            0
            0            0            0     1005/692    -4095/692    -1335/692     1085/692         -5/4     1265/692            0
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

show 4 5
           10            3            8            6            0       76/175      297/700     -117/350      513/700     -201/700
            0           11            8           10            0     -208/175     1499/700      -39/350      171/700      -67/700
            0            0         23/4            8            0        19/28      125/112       -31/56     -171/112       67/112
            0            0            0     1005/692            0   -1407/1730  10117/13840   -4087/6920   5293/13840   7839/13840
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

show 4 4
           10            3            8            0            0      664/175    -1817/700      737/350     -593/700    -1839/700
            0           11            8            0            0      772/175   -6073/2100    4153/1050   -5017/2100    -2797/700
            0            0         23/4            0            0     3611/700  -24449/8400   11339/4200  -30521/8400   -7061/2800
            0            0            0     1005/692            0   -1407/1730  10117/13840   -4087/6920   5293/13840   7839/13840
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

show 4 3
           10            3            0            0            0     -592/175    3053/2100   -1733/1050    8837/2100      617/700
            0           11            0            0            0     -484/175    2431/2100     209/1050    5599/2100     -341/700
            0            0         23/4            0            0     3611/700  -24449/8400   11339/4200  -30521/8400   -7061/2800
            0            0            0     1005/692            0   -1407/1730  10117/13840   -4087/6920   5293/13840   7839/13840
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

show 4 2
           10            0            0            0            0       -92/35      239/210     -179/105      731/210        71/70
            0           11            0            0            0     -484/175    2431/2100     209/1050    5599/2100     -341/700
            0            0         23/4            0            0     3611/700  -24449/8400   11339/4200  -30521/8400   -7061/2800
            0            0            0     1005/692            0   -1407/1730  10117/13840   -4087/6920   5293/13840   7839/13840
            0            0            0            0 221375/29583   13915/9861 -13915/13148  16445/19722    -1265/692 84755/118332

Upper half has all zeros

show 5
          1          0          0          0          0    -46/175   239/2100  -179/1050   731/2100     71/700
          0          1          0          0          0    -44/175   221/2100    19/1050   509/2100    -31/700
          0          0          1          0          0    157/175 -1063/2100   493/1050 -1327/2100   -307/700
          0          0          0          1          0     -14/25    151/300    -61/150     79/300     39/100
          0          0          0          0          1     33/175    -99/700     39/350   -171/700     67/700

Main diagonal has all ones

show 6 The inverse matrix
    -46/175   239/2100  -179/1050   731/2100     71/700
    -44/175   221/2100    19/1050   509/2100    -31/700
    157/175 -1063/2100   493/1050 -1327/2100   -307/700
     -14/25    151/300    -61/150     79/300     39/100
     33/175    -99/700     39/350   -171/700     67/700

The product of input and inverse matrix
 1 0 0 0 0
 0 1 0 0 0
 0 0 1 0 0
 0 0 0 1 0
 0 0 0 0 1

Sidef

Uses the rref(M) function from Reduced row echelon form.

Translation of: Perl 6

<lang ruby>func gauss_jordan_invert (M) {

   var I = M.len.of {|i|
       M.len.of {|j|
           i == j ? 1 : 0
       }
   }
   var A = gather {
       ^M -> each {|i| take(M[i] + I[i]) }
   }
   rref(A).map { .last(M.len) }

}

var A = [

   [-1, -2, 3, 2],
   [-4, -1, 6, 2],
   [ 7, -8, 9, 1],
   [ 1, -2, 1, 3],

]

say gauss_jordan_invert(A).map {

   .map { "%6s" % .as_rat }.join("  ")

}.join("\n")</lang>

Output:
-21/23   17/69  13/138   19/46
-38/23   15/23    1/23   15/23
-16/23   25/69  11/138    9/46
-13/23   16/69   -2/69   13/23

VBA

Translation of: Phix

Uses ToReducedRowEchelonForm() from Reduced_row_echelon_form#VBA<lang vb>Private Function inverse(mat As Variant) As Variant

   Dim len_ As Integer: len_ = UBound(mat)
   Dim tmp() As Variant
   ReDim tmp(2 * len_ + 1)
   Dim aug As Variant
   ReDim aug(len_)
   For i = 0 To len_
       If UBound(mat(i)) <> len_ Then Debug.Print 9 / 0 '-- "Not a square matrix"
       aug(i) = tmp
       For j = 0 To len_
           aug(i)(j) = mat(i)(j)
       Next j
       '-- augment by identity matrix to right
       aug(i)(i + len_ + 1) = 1
   Next i
   aug = ToReducedRowEchelonForm(aug)
   Dim inv As Variant
   inv = mat
   '-- remove identity matrix to left
   For i = 0 To len_
       For j = len_ + 1 To 2 * len_ + 1
           inv(i)(j - len_ - 1) = aug(i)(j)
       Next j
   Next i
   inverse = inv

End Function

Public Sub main()

   Dim test As Variant
   test = inverse(Array( _
       Array(2, -1, 0), _
       Array(-1, 2, -1), _
       Array(0, -1, 2)))
   For i = LBound(test) To UBound(test)
       For j = LBound(test(0)) To UBound(test(0))
           Debug.Print test(i)(j),
       Next j
   Debug.Print
   Next i

End Sub</lang>

Output:
 0,75          0,5           0,25         
 0,5           1             0,5          
 0,25          0,5           0,75 

zkl

This uses GSL to invert a matrix via LU decomposition, not Gauss-Jordan. <lang zkl>var [const] GSL=Import.lib("zklGSL"); // libGSL (GNU Scientific Library) m:=GSL.Matrix(3,3).set(1,2,3, 4,1,6, 7,8,9); i:=m.invert(); i.format(10,4).println("\n"); (m*i).format(10,4).println();</lang>

Output:
   -0.8125,    0.1250,    0.1875
    0.1250,   -0.2500,    0.1250
    0.5208,    0.1250,   -0.1458

    1.0000,    0.0000,    0.0000
   -0.0000,    1.0000,    0.0000
   -0.0000,    0.0000,    1.0000

<lang zkl>m:=GSL.Matrix(3,3).set(2,-1,0, -1,2,-1, 0,-1,2); m.invert().format(10,4).println("\n");</lang>

Output:
    0.7500,    0.5000,    0.2500
    0.5000,    1.0000,    0.5000
    0.2500,    0.5000,    0.7500