Tree traversal

From Rosetta Code
Revision as of 12:38, 29 August 2010 by 87.194.249.72 (talk) (Added C# version.)
Task
Tree traversal
You are encouraged to solve this task according to the task description, using any language you may know.

Implement a binary tree where each node carries an integer, and implement preoder, inorder, postorder and level-order traversal. Use those traversals to output the following tree:

         1
        / \
       /   \
      /     \
     2       3
    / \     /
   4   5   6
  /       / \
 7       8   9

The correct output should look like this:

preorder:    1 2 4 7 5 3 6 8 9
inorder:     7 4 2 5 1 8 6 9 3
postorder:   7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

This article has more information on traversing trees.

Ada

<lang Ada>with Ada.Text_Io; use Ada.Text_Io; with Ada.Unchecked_Deallocation; with Ada.Containers.Doubly_Linked_Lists;

procedure Tree_Traversal is

  type Node;
  type Node_Access is access Node;
  type Node is record
     Left : Node_Access := null;
     Right : Node_Access := null;
     Data : Integer;
  end record;
  procedure Destroy_Tree(N : in out Node_Access) is
     procedure free is new Ada.Unchecked_Deallocation(Node, Node_Access);
  begin
     if N.Left /= null then
        Destroy_Tree(N.Left);
     end if;
     if N.Right /= null then 
        Destroy_Tree(N.Right);
     end if;
     Free(N);
  end Destroy_Tree;
  function Tree(Value : Integer; Left : Node_Access; Right : Node_Access) return Node_Access is
     Temp : Node_Access := new Node;
  begin
     Temp.Data := Value;
     Temp.Left := Left;
     Temp.Right := Right;
     return Temp;
  end Tree;
  procedure Preorder(N : Node_Access) is
  begin
     Put(Integer'Image(N.Data));
     if N.Left /= null then
        Preorder(N.Left);
     end if;
     if N.Right /= null then
        Preorder(N.Right);
     end if;
  end Preorder;
  procedure Inorder(N : Node_Access) is
  begin
     if N.Left /= null then
        Inorder(N.Left);
     end if;
     Put(Integer'Image(N.Data));
     if N.Right /= null then
        Inorder(N.Right);
     end if;
  end Inorder;
  procedure Postorder(N : Node_Access) is
  begin
     if N.Left /= null then
        Postorder(N.Left);
     end if;
     if N.Right /= null then
        Postorder(N.Right);
     end if;
     Put(Integer'Image(N.Data));
  end Postorder;
  procedure Levelorder(N : Node_Access) is
     package Queues is new Ada.Containers.Doubly_Linked_Lists(Node_Access);
     use Queues;
     Node_Queue : List;
     Next : Node_Access;
  begin
     Node_Queue.Append(N);
     while not Is_Empty(Node_Queue) loop
        Next := First_Element(Node_Queue);
        Delete_First(Node_Queue);
        Put(Integer'Image(Next.Data));
        if Next.Left /= null then
           Node_Queue.Append(Next.Left);
        end if;
        if Next.Right /= null then
           Node_Queue.Append(Next.Right);
        end if;
     end loop;
  end Levelorder;
  N : Node_Access;

begin

  N := Tree(1, 
     Tree(2,
        Tree(4,
           Tree(7, null, null),
           null),
        Tree(5, null, null)),
     Tree(3,
        Tree(6,
           Tree(8, null, null),
           Tree(9, null, null)),
        null));
        
  Put("preorder:    ");
  Preorder(N);
  New_Line;
  Put("inorder:     ");
  Inorder(N);
  New_Line;
  Put("postorder:   ");
  Postorder(N);
  New_Line;
  Put("level order: ");
  Levelorder(N);
  New_Line;
  Destroy_Tree(N);

end Tree_traversal;</lang>

ALGOL 68

Translation of: C

- note the strong code structural similarities with C.

Note the changes from the original translation from C in this diff. It contains examples of syntactic sugar available in ALGOL 68.

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards)

<lang algol68>MODE VALUE = INT; PROC value repr = (VALUE value)STRING: whole(value, 0);

MODE NODES = STRUCT ( VALUE value, REF NODES left, right); MODE NODE = REF NODES;

PROC tree = (VALUE value, NODE left, right)NODE:

 HEAP NODES := (value, left, right);

PROC preorder = (NODE node, PROC (VALUE)VOID action)VOID:

 IF node ISNT NODE(NIL) THEN
   action(value OF node);
   preorder(left OF node, action);
   preorder(right OF node, action)
 FI;

PROC inorder = (NODE node, PROC (VALUE)VOID action)VOID:

 IF node ISNT NODE(NIL) THEN
   inorder(left OF node, action);
   action(value OF node);
   inorder(right OF node, action)
 FI;

PROC postorder = (NODE node, PROC (VALUE)VOID action)VOID:

 IF node ISNT NODE(NIL) THEN
   postorder(left OF node, action);
   postorder(right OF node, action);
   action(value OF node)
 FI;

PROC destroy tree = (NODE node)VOID:

 postorder(node, (VALUE skip)VOID: 
 # free(node) - PR garbage collect hint PR #
   node := (SKIP, NIL, NIL)
 );

  1. helper queue for level order #

MODE QNODES = STRUCT (REF QNODES next, NODE value); MODE QNODE = REF QNODES;


MODE QUEUES = STRUCT (QNODE begin, end); MODE QUEUE = REF QUEUES;

PROC enqueue = (QUEUE queue, NODE node)VOID: (

 HEAP QNODES qnode := (NIL, node);
 IF end OF queue ISNT QNODE(NIL) THEN
   next OF end OF queue
 ELSE
   begin OF queue
 FI := end OF queue := qnode

);

PROC queue empty = (QUEUE queue)BOOL:

 begin OF queue IS QNODE(NIL);

PROC dequeue = (QUEUE queue)NODE: (

 NODE out := value OF begin OF queue;
 QNODE second := next OF begin OF queue;
  1. free(begin OF queue); PR garbage collect hint PR #
 QNODE(begin OF queue) := (NIL, NIL);
 begin OF queue := second;
 IF queue empty(queue) THEN
   end OF queue := begin OF queue
 FI;
 out

);

PROC level order = (NODE node, PROC (VALUE)VOID action)VOID: (

 HEAP QUEUES queue := (QNODE(NIL), QNODE(NIL));
 enqueue(queue, node);
 WHILE NOT queue empty(queue)
 DO
   NODE next := dequeue(queue);
   IF next ISNT NODE(NIL) THEN
     action(value OF next);
     enqueue(queue, left OF next);
     enqueue(queue, right OF next)
   FI
 OD

);

PROC print node = (VALUE value)VOID:

 print((" ",value repr(value)));

main: (

 NODE node := tree(1,
               tree(2,
                    tree(4,
                         tree(7, NIL, NIL),
                         NIL),
                    tree(5, NIL, NIL)),
               tree(3,
                    tree(6,
                         tree(8, NIL, NIL),
                         tree(9, NIL, NIL)),
                    NIL));
 MODE TEST = STRUCT(
   STRING name, 
   PROC(NODE,PROC(VALUE)VOID)VOID order
 );
 PROC test = (TEST test)VOID:(
   STRING pad=" "*(12-UPB name OF test);
   print((name OF test,pad,": "));
   (order OF test)(node, print node);
   print(new line)
 );

 []TEST test list = (
   ("preorder",preorder),
   ("inorder",inorder),
   ("postorder",postorder),
   ("level order",level order)
 );
 FOR i TO UPB test list DO test(test list[i]) OD;
 destroy tree(node)

)</lang> Output:

preorder :     1 2 4 7 5 3 6 8 9 
inorder :      7 4 2 5 1 8 6 9 3 
postorder :    7 4 5 2 8 9 6 3 1 
level-order :  1 2 3 4 5 6 7 8 9 

AutoHotkey

Works with: AutoHotkey_L version 45

<lang AutoHotkey>AddNode(Tree,1,2,3,1) ; Build global Tree AddNode(Tree,2,4,5,2) AddNode(Tree,3,6,0,3) AddNode(Tree,4,7,0,4) AddNode(Tree,5,0,0,5) AddNode(Tree,6,8,9,6) AddNode(Tree,7,0,0,7) AddNode(Tree,8,0,0,8) AddNode(Tree,9,0,0,9)

MsgBox % "Preorder: " PreOrder(Tree,1)  ; 1 2 4 7 5 3 6 8 9 MsgBox % "Inorder: " InOrder(Tree,1)  ; 7 4 2 5 1 8 6 9 3 MsgBox % "postorder: " PostOrder(Tree,1) ; 7 4 5 2 8 9 6 3 1 MsgBox % "levelorder: " LevOrder(Tree,1)  ; 1 2 3 4 5 6 7 8 9

AddNode(ByRef Tree,Node,Left,Right,Value) {

  if !isobject(Tree)
    Tree := object()
  Tree[Node, "L"] := Left
  Tree[Node, "R"] := Right
  Tree[Node, "V"] := Value

}

PreOrder(Tree,Node) { ptree := Tree[Node, "V"] " "

       . ((L:=Tree[Node, "L"]) ? PreOrder(Tree,L) : "")
       . ((R:=Tree[Node, "R"]) ? PreOrder(Tree,R) : "")

return ptree } InOrder(Tree,Node) {

  Return itree := ((L:=Tree[Node, "L"]) ? InOrder(Tree,L) : "")
       . Tree[Node, "V"] " "
       . ((R:=Tree[Node, "R"]) ? InOrder(Tree,R) : "")

} PostOrder(Tree,Node) {

  Return ptree := ((L:=Tree[Node, "L"]) ? PostOrder(Tree,L) : "")
       . ((R:=Tree[Node, "R"]) ? PostOrder(Tree,R) : "")
       . Tree[Node, "V"] " "

} LevOrder(Tree,Node,Lev=1) {

  Static                        ; make node lists static
  i%Lev% .= Tree[Node, "V"] " " ; build node lists in every level
  If (L:=Tree[Node, "L"])
      LevOrder(Tree,L,Lev+1)
  If (R:=Tree[Node, "R"])
      LevOrder(Tree,R,Lev+1)
  If (Lev > 1)
     Return
  While i%Lev%                  ; concatenate node lists from all levels
     t .= i%Lev%, Lev++
  Return t

}</lang>

C

<lang c>#include <stdlib.h>

  1. include <stdio.h>

typedef struct node_s {

 int value;
 struct node_s* left;
 struct node_s* right;

} *node;

node tree(int v, node l, node r) {

 node n = malloc(sizeof(struct node_s));
 n->value = v;
 n->left  = l;
 n->right = r;
 return n;

}

void destroy_tree(node n) {

 if (n->left)
   destroy_tree(n->left);
 if (n->right)
   destroy_tree(n->right);
 free(n);

}

void preorder(node n, void (*f)(int)) {

 f(n->value);
 if (n->left)
   preorder(n->left, f);
 if (n->right)
   preorder(n->right, f);

}

void inorder(node n, void (*f)(int)) {

 if (n->left)
   inorder(n->left, f);
 f(n->value);
 if (n->right)
   inorder(n->right, f);

}

void postorder(node n, void (*f)(int)) {

 if (n->left)
   postorder(n->left, f);
 if (n->right)
   postorder(n->right, f);
 f(n->value);

}

/* helper queue for levelorder */ typedef struct qnode_s {

 struct qnode_s* next;
 node value;

} *qnode;

typedef struct { qnode begin, end; } queue;

void enqueue(queue* q, node n) {

 qnode node = malloc(sizeof(struct qnode_s));
 node->value = n;
 node->next = 0;
 if (q->end)
   q->end->next = node;
 else
   q->begin = node;
 q->end = node;

}

node dequeue(queue* q) {

 node tmp = q->begin->value;
 qnode second = q->begin->next;
 free(q->begin);
 q->begin = second;
 if (!q->begin)
   q->end = 0;
 return tmp;

}

int queue_empty(queue* q) {

 return !q->begin;

}

void levelorder(node n, void(*f)(int)) {

 queue nodequeue = {};
 enqueue(&nodequeue, n);
 while (!queue_empty(&nodequeue))
 {
   node next = dequeue(&nodequeue);
   f(next->value);
   if (next->left)
     enqueue(&nodequeue, next->left);
   if (next->right)
     enqueue(&nodequeue, next->right);
 }

}

void print(int n) {

 printf("%d ", n);

}

int main() {

 node n = tree(1,
               tree(2,
                    tree(4,
                         tree(7, 0, 0),
                         0),
                    tree(5, 0, 0)),
               tree(3,
                    tree(6,
                         tree(8, 0, 0),
                         tree(9, 0, 0)),
                    0));
 printf("preorder:    ");
 preorder(n, print);
 printf("\n");
 printf("inorder:     ");
 inorder(n, print);
 printf("\n");
 printf("postorder:   ");
 postorder(n, print);
 printf("\n");
 printf("level-order: ");
 levelorder(n, print);
 printf("\n");
 destroy_tree(n);
 return 0;

}</lang>

C++

Compiler: g++ (version 4.3.2 20081105 (Red Hat 4.3.2-7))

Library: Boost version 1.39.0

<lang cpp>#include <boost/scoped_ptr.hpp>

  1. include <iostream>
  2. include <queue>

template<typename T> class TreeNode { public:

 TreeNode(const T& n, TreeNode* left = NULL, TreeNode* right = NULL)
   : mValue(n),
     mLeft(left),
     mRight(right) {}
 T getValue() const {
   return mValue;
 }
 TreeNode* left() const {
   return mLeft.get();
 }
 TreeNode* right() const {
   return mRight.get();
 }
 void preorderTraverse() const {
   std::cout << " " << getValue();
   if(mLeft)  { mLeft->preorderTraverse();  }
   if(mRight) { mRight->preorderTraverse(); }
 }
 void inorderTraverse() const {
   if(mLeft)  { mLeft->inorderTraverse();  }
   std::cout << " " << getValue();
   if(mRight) { mRight->inorderTraverse(); }
 }
 void postorderTraverse() const {
   if(mLeft)  { mLeft->postorderTraverse();  }
   if(mRight) { mRight->postorderTraverse(); }
   std::cout << " " << getValue();
 }
 void levelorderTraverse() const {
   std::queue<const TreeNode*> q;
   q.push(this);
   while(!q.empty()) {
     const TreeNode* n = q.front();
     q.pop();
     std::cout << " " << n->getValue();
     if(n->left())  { q.push(n->left());  }
     if(n->right()) { q.push(n->right()); }
   }
 }

protected:

 T mValue;
 boost::scoped_ptr<TreeNode> mLeft;
 boost::scoped_ptr<TreeNode> mRight;

private:

 TreeNode();

};

int main() {

 TreeNode<int> root(1,
   new TreeNode<int>(2,
     new TreeNode<int>(4,
       new TreeNode<int>(7)),
     new TreeNode<int>(5)),
   new TreeNode<int>(3,
     new TreeNode<int>(6,
       new TreeNode<int>(8),
       new TreeNode<int>(9))));
 std::cout << "preorder:   ";
 root.preorderTraverse();
 std::cout << std::endl;
 std::cout << "inorder:    ";
 root.inorderTraverse();
 std::cout << std::endl;
 std::cout << "postorder:  ";
 root.postorderTraverse();
 std::cout << std::endl;
 std::cout << "level-order:";
 root.levelorderTraverse();
 std::cout << std::endl;
 return 0;

}</lang>

C#

Works with: C# version 3.0

<lang csharp>using System; using System.Collections.Generic;

namespace TreeTraversal {

   class Program
   {
       class Tree<Type>
       {
           public Tree<Type> Left { get; private set; }
           public Tree<Type> Right { get; private set; }
           public Type Value { get; set; }
           public Tree(Type value, Tree<Type> left, Tree<Type> right)
           {
               Value = value;
               Left = left;
               Right = right;
           }
           public IEnumerable<Type> PreorderIterator()
           {
               yield return Value;
               if (Left != null)
                   foreach (Type val in Left.PreorderIterator())
                       yield return val;
               if (Right != null)
                   foreach (Type val in Right.PreorderIterator())
                       yield return val;
           }
           public IEnumerable<Type> InorderIterator()
           {
               if (Left != null)
                   foreach (Type val in Left.InorderIterator())
                       yield return val;
               yield return Value;
               if (Right != null)
                   foreach (Type val in Right.InorderIterator())
                       yield return val;
           }
           public IEnumerable<Type> PostorderIterator()
           {
               if (Left != null)
                   foreach (Type val in Left.PostorderIterator())
                       yield return val;
               if (Right != null)
                   foreach (Type val in Right.PostorderIterator())
                       yield return val;
               yield return Value;
           }
           public IEnumerable<Type> LevelOrderIterator()
           {
               Queue<Tree<Type>> queue = new Queue<Tree<Type>>();
               queue.Enqueue(this);
               while (queue.Count > 0)
               {
                   Tree<Type> node = queue.Dequeue();
                   yield return node.Value;
                   if (node.Left != null)
                       queue.Enqueue(node.Left);
                   if (node.Right != null)
                       queue.Enqueue(node.Right);
               }
           }
       }
       static private void ShowTree<Type>(string label,IEnumerable<Type> enumerable)
       {
           Console.Write(label);
           foreach (Type val in enumerable)
           {
               Console.Write(" {0}", val);
           }
           Console.WriteLine();
       }
       static void Main(string[] args)
       {
           Tree<int> tree =
               new Tree<int>(1,
                   new Tree<int>(2,
                       new Tree<int>(4,
                           new Tree<int>(7, null, null),
                           null),
                       new Tree<int>(5, null, null)),
                   new Tree<int>(3,
                       new Tree<int>(6,
                           new Tree<int>(8, null, null),
                           new Tree<int>(9, null, null)),
                       null));
           ShowTree("preorder:   ", tree.PreorderIterator());
           ShowTree("inorder:    ", tree.InorderIterator());
           ShowTree("postorder:  ", tree.PostorderIterator());
           ShowTree("level-order:", tree.LevelOrderIterator());
       }
   }

}</lang>

Clojure

<lang clojure>(defn walk [node f order]

 (when node
  (doseq [o order]
    (if (= o :visit)
      (f (:val node))
      (walk (node o) f order)))))

(defn preorder [node f]

 (walk node f [:visit :left :right]))

(defn inorder [node f]

 (walk node f [:left :visit :right]))

(defn postorder [node f]

 (walk node f [:left :right :visit]))

(defn queue [& xs]

 (when (seq xs)
  (apply conj clojure.lang.PersistentQueue/EMPTY xs)))

(defn level-order [root f]

 (loop [q (queue root)]
   (when-not (empty? q)
     (if-let [node (first q)]
       (do
         (f (:val node))
         (recur (conj (pop q) (:left node) (:right node))))
       (recur (pop q))))))

(defn vec-to-tree [t]

 (if (vector? t)
   (let [[val left right] t]
     {:val val
      :left (vec-to-tree left)
      :right (vec-to-tree right)})
   t))

(let [tree (vec-to-tree [1 [2 [4 [7]] [5]] [3 [6 [8] [9]]]])

     fs   '[preorder inorder postorder level-order]
     pr-node #(print (format "%2d" %))]
 (doseq [f fs]
   (print (format "%-12s" (str f ":")))
   ((resolve f) tree pr-node)
   (println)))</lang>

Common Lisp

<lang lisp>(defun preorder (node f)

 (when node
   (funcall f (first node))
   (preorder (second node) f)
   (preorder (third node)  f)))

(defun inorder (node f)

 (when node
   (inorder (second node) f)
   (funcall f (first node))
   (inorder (third node)  f)))

(defun postorder (node f)

 (when node
   (postorder (second node) f)
   (postorder (third node)  f)
   (funcall f (first node))))

(defun level-order (node f)

 (loop with level = (list node)
       while level
       do
   (setf level (loop for node in level
                     when node
                       do (funcall f (first node))
                       and collect (second node)
                       and collect (third node)))))

(defparameter *tree* '(1 (2 (4 (7))

                           (5))
                        (3 (6 (8)
                              (9)))))

(defun show (traversal-function)

 (format t "~&~(~A~):~12,0T" traversal-function)
 (funcall traversal-function *tree* (lambda (value) (format t " ~A" value))))

(map nil #'show '(preorder inorder postorder level-order))</lang>

Output:

preorder:    1 2 4 7 5 3 6 8 9
inorder:     7 4 2 5 1 8 6 9 3
postorder:   7 4 2 5 1 8 6 9 3
level-order: 1 2 3 4 5 6 7 8 9

D

Code for D V.2. This code is very generic, if you need it less generic it can be shortened. <lang d>import std.stdio: write, writeln;

class Node(T) {

   T data;
   Node left, right;
   this(T data, Node left=null, Node right=null) {
       this.data = data;
       this.left = left;
       this.right = right;
   }

}

// static templated opCall can't be used in Node auto node(T)(T data, Node!T left=null, Node!T right=null) {

   return new Node!T(data, left, right);

}

void show(T)(T x) {

   write(x, " ");

}

enum Visit { pre, inv, post }

// visitor can be any kind of callable or it uses a default visitor. // TNode can be any kind of Node, with data, left and right fields, // so this is more generic than a member function of Node. void backtrackingOrder(Visit v, TNode, TyF=void*)(TNode node, TyF visitor=null) {

   static if (is(TyF == void*)) auto truevisitor = &show!(typeof(node.data));
   else                         auto truevisitor = visitor;
   if (node !is null) {
       static if (v == Visit.pre)     truevisitor(node.data);
       backtrackingOrder!v(node.left, visitor);
       static if (v == Visit.inv) truevisitor(node.data);
       backtrackingOrder!v(node.right, visitor);
       static if (v == Visit.post)    truevisitor(node.data);
   }

}

void levelOrder(TNode, TyF=void*)(TNode node, TyF visitor=null, TNode[] more=[]) {

   static if (is(TyF == void*)) auto truevisitor = &show!(typeof(node.data));
   else                         auto truevisitor = visitor;
   if (node !is null) {
       more ~= [node.left, node.right];
       truevisitor(node.data);
   }
   if (more.length)
       levelOrder(more[0], truevisitor, more[1..$]);

}

void main() {

   auto tree = node(1,
                    node(2,
                         node(4,
                              node(7)),
                         node(5)),
                    node(3,
                         node(6,
                              node(8),
                              node(9))));
   write("  preOrder: ");
   backtrackingOrder!(Visit.pre)(tree);
   write("\n   inorder: ");
   backtrackingOrder!(Visit.inv)(tree);
   write("\n postOrder: ");
   backtrackingOrder!(Visit.post)(tree);
   write("\nlevelorder: ");
   levelOrder(tree);
   writeln();

}</lang>

Output:

  preOrder: 1 2 4 7 5 3 6 8 9
   inOrder: 7 4 2 5 1 8 6 9 3
 postOrder: 7 4 5 2 8 9 6 3 1
levelorder: 1 2 3 4 5 6 7 8 9

E

<lang e>def btree := [1, [2, [4, [7, null, null],

                        null],
                    [5, null, null]],
                [3, [6, [8, null, null],
                        [9, null, null]],
                    null]]

def backtrackingOrder(node, pre, mid, post) {

   switch (node) {
       match ==null {}
       match [value, left, right] {
           pre(value)
           backtrackingOrder(left, pre, mid, post)
           mid(value)
           backtrackingOrder(right, pre, mid, post)
           post(value)
       }
   }

}

def levelOrder(root, func) {

   var level := [root].diverge()
   while (level.size() > 0) {
       for node in level.removeRun(0) {
           switch (node) {
               match ==null {}
               match [value, left, right] {
                   func(value)
                   level.push(left)
                   level.push(right)

} } } } }

print("preorder: ") backtrackingOrder(btree, fn v { print(" ", v) }, fn _ {}, fn _ {}) println()

print("inorder: ") backtrackingOrder(btree, fn _ {}, fn v { print(" ", v) }, fn _ {}) println()

print("postorder: ") backtrackingOrder(btree, fn _ {}, fn _ {}, fn v { print(" ", v) }) println()

print("level-order:") levelOrder(btree, fn v { print(" ", v) }) println()</lang>

Erlang

<lang erlang>-module(tree_traversal). -export([main/0]). -export([preorder/2, inorder/2, postorder/2, levelorder/2]). -export([tnode/0, tnode/1, tnode/3]).

-define(NEWLINE, io:format("~n")).

tnode() -> {}. tnode(V) -> {node, V, {}, {}}. tnode(V,L,R) -> {node, V, L, R}.

preorder(_,{}) -> ok; preorder(F,{node,V,L,R}) ->

   F(V), preorder(F,L), preorder(F,R).

inorder(_,{}) -> ok; inorder(F,{node,V,L,R}) ->

   inorder(F,L), F(V), inorder(F,R).
   

postorder(_,{}) -> ok; postorder(F,{node,V,L,R}) ->

   postorder(F,L), postorder(F,R), F(V).

levelorder(_, []) -> []; levelorder(F, [{}|T]) -> levelorder(F, T); levelorder(F, [{node,V,L,R}|T]) ->

   F(V), levelorder(F, T++[L,R]);

levelorder(F, X) -> levelorder(F, [X]).

main() ->

   Tree = tnode(1,
                tnode(2,
                      tnode(4, tnode(7), tnode()),
                      tnode(5, tnode(), tnode())),
                tnode(3,
                      tnode(6, tnode(8), tnode(9)),
                      tnode())),
   F = fun(X) -> io:format("~p ",[X]) end,
   preorder(F, Tree), ?NEWLINE,
   inorder(F, Tree), ?NEWLINE,
   postorder(F, Tree), ?NEWLINE,
   levelorder(F, Tree), ?NEWLINE.</lang>

Output:

1 2 4 7 5 3 6 8 9 
7 4 2 5 1 8 6 9 3 
7 4 5 2 8 9 6 3 1 
1 2 3 4 5 6 7 8 9 

Factor

<lang factor>USING: accessors combinators deques dlists fry io kernel math.parser ; IN: rosetta.tree-traversal

TUPLE: node data left right ;

CONSTANT: example-tree

   T{ node f 1
       T{ node f 2
           T{ node f 4
               T{ node f 7 f f }
               f
           }
           T{ node f 5 f f }
       }
       T{ node f 3
           T{ node f 6
               T{ node f 8 f f }
               T{ node f 9 f f }
           }
           f
       }
   }
preorder ( node quot: ( data -- ) -- )
   [ [ data>> ] dip call ]
   [ [ left>> ] dip over [ preorder ] [ 2drop ] if ]
   [ [ right>> ] dip over [ preorder ] [ 2drop ] if ]
   2tri ; inline recursive
inorder ( node quot: ( data -- ) -- )
   [ [ left>> ] dip over [ inorder ] [ 2drop ] if ]
   [ [ data>> ] dip call ]
   [ [ right>> ] dip over [ inorder ] [ 2drop ] if ]
   2tri ; inline recursive
postorder ( node quot: ( data -- ) -- )
   [ [ left>> ] dip over [ postorder ] [ 2drop ] if ]
   [ [ right>> ] dip over [ postorder ] [ 2drop ] if ]
   [ [ data>> ] dip call ]
   2tri ; inline recursive
(levelorder) ( dlist quot: ( data -- ) -- )
   over deque-empty? [ 2drop ] [
       [ dup pop-front ] dip {
           [ [ data>> ] dip call drop ]
           [ drop left>> [ swap push-back ] [ drop ] if* ]
           [ drop right>> [ swap push-back ] [ drop ] if* ]
           [ nip (levelorder) ] 
       } 3cleave
   ] if ; inline recursive
levelorder ( node quot: ( data -- ) -- )
   [ 1dlist ] dip (levelorder) ; inline
levelorder2 ( node quot: ( data -- ) -- )
   [ 1dlist ] dip
   [ dup deque-empty? not ] swap '[
       dup pop-front
       [ data>> @ ]
       [ left>> [ over push-back ] when* ]
       [ right>> [ over push-back ] when* ] tri
   ] while drop ; inline
main ( -- )
   example-tree [ number>string write " " write ] {
       [ "preorder:    " write preorder    nl ]
       [ "inorder:     " write inorder     nl ]
       [ "postorder:   " write postorder   nl ]
       [ "levelorder:  " write levelorder  nl ]
       [ "levelorder2: " write levelorder2 nl ]
   } 2cleave ;</lang>

Forth

<lang forth>\ binary tree (dictionary)

node ( l r data -- node ) here >r , , , r> ;
leaf ( data -- node ) 0 0 rot node ;
>data ( node -- ) @ ;
>right ( node -- ) cell+ @ ;
>left ( node -- ) cell+ cell+ @ ;
preorder ( xt tree -- )
 dup 0= if 2drop exit then
 2dup >data swap execute
 2dup >left recurse
      >right recurse ;
inorder ( xt tree -- )
 dup 0= if 2drop exit then
 2dup >left recurse
 2dup >data swap execute
      >right recurse ;
postorder ( xt tree -- )
 dup 0= if 2drop exit then
 2dup >left recurse
 2dup >right recurse
      >data swap execute ;
max-depth ( tree -- n )
 dup 0= if exit then
 dup  >left recurse
 swap >right recurse max 1+ ;

defer depthaction

depthorder ( depth tree -- )
 dup 0= if 2drop exit then
 over 0=
 if   >data depthaction drop
 else over 1- over >left  recurse
      swap 1- swap >right recurse
 then ;
levelorder ( xt tree -- )
 swap is depthaction
 dup max-depth 0 ?do
   i over depthorder
 loop drop ;

7 leaf 0 4 node

             5 leaf 2 node

8 leaf 9 leaf 6 node

             0      3 node 1 node value tree

cr ' . tree preorder \ 1 2 4 7 5 3 6 8 9 cr ' . tree inorder \ 7 4 2 5 1 8 6 9 3 cr ' . tree postorder \ 7 4 5 2 8 9 6 3 1 cr tree max-depth . \ 4 cr ' . tree levelorder \ 1 2 3 4 5 6 7 8 9</lang>

Go

<lang go>package main

import (

  "container/list"
  "fmt"

)

type T int

type Node struct {

  Value T
  Left, Right *Node

}

func (n *Node) IterPreorder() (<-chan T) {

  out := make(chan T)
  var recursive func(*Node)
  recursive = func(node *Node) {
     out <- node.Value
     if node.Left != nil { recursive(node.Left) }
     if node.Right != nil { recursive(node.Right) }
  }
  go func() {
     recursive(n)
     close(out)
  }()
  return out

}

func (n *Node) IterInorder() (<-chan T) {

  out := make(chan T)
  var recursive func(*Node)
  recursive = func(node *Node) {
     if node.Left != nil { recursive(node.Left) }
     out <- node.Value
     if node.Right != nil { recursive(node.Right) }
  }
  go func() {
     recursive(n)
     close(out)
  }()
  return out

}

func (n *Node) IterPostorder() (<-chan T) {

  out := make(chan T)
  var recursive func(*Node)
  recursive = func(node *Node) {
     if node.Left != nil { recursive(node.Left) }
     if node.Right != nil { recursive(node.Right) }
     out <- node.Value
  }
  go func() {
     recursive(n)
     close(out)
  }()
  return out

}

func (n *Node) IterLevelorder() (<-chan T) {

  out := make(chan T,20)
  pop := func(lst *list.List) *Node {
     elm := lst.Front()
     val := elm.Value.(*Node)
     lst.Remove(elm)
     return val
  }
  go func() {
     queue := list.New()
     queue.PushBack(n)
     for queue.Len() > 0 {
        node := pop(queue)
        out <- node.Value
        if node.Left != nil { queue.PushBack(node.Left) }
        if node.Right != nil { queue.PushBack(node.Right) }
     }
     close(out)
  }()
  return out

}

func main() {

  tree := &Node{1,
     &Node{2,
        &Node{4,
           &Node{7,nil,nil},
           nil},
        &Node{5,nil,nil}},
     &Node{3,
        &Node{6,
           &Node{8,nil,nil},
           &Node{9,nil,nil}},
        nil}}
  fmt.Printf("%-12s", "preorder:")
  for val := range tree.IterPreorder() {
     fmt.Printf(" %d", val)
  }
  fmt.Printf("\n%-12s", "inorder:")
  for val := range tree.IterInorder() {
     fmt.Printf(" %d", val)
  }
  fmt.Printf("\n%-12s", "postorder:")
  for val := range tree.IterPostorder() {
     fmt.Printf(" %d", val)
  }
  fmt.Printf("\n%-12s", "level-order:")
  for val := range tree.IterLevelorder() {
     fmt.Printf(" %d", val)
  }
  fmt.Println()

}</lang>

Output:

preorder:    1 2 4 7 5 3 6 8 9
inorder:     7 4 2 5 1 8 6 9 3
postorder:   7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

Haskell

<lang haskell>data Tree a = Empty

           | Node { value :: a,
                    left  :: Tree a,
                    right :: Tree a }

preorder, inorder, postorder, levelorder :: Tree a -> [a]

preorder Empty = [] preorder (Node v l r) = [v]

                       ++ preorder l
                       ++ preorder r

inorder Empty = [] inorder (Node v l r) = inorder l

                      ++ [v]
                      ++ inorder r

postorder Empty = [] postorder (Node v l r) = postorder l

                        ++ postorder r
                        ++ [v]

levelorder x = loop [x]

   where loop []                = []
         loop (Empty      : xs) = loop xs
         loop (Node v l r : xs) = v : loop (xs ++ [l,r])

tree :: Tree Int tree = Node 1

           (Node 2
                 (Node 4
                       (Node 7 Empty Empty)
                       Empty)
                 (Node 5 Empty Empty))
           (Node 3
                 (Node 6
                       (Node 8 Empty Empty)
                       (Node 9 Empty Empty))
                 Empty)

main :: IO () main = do print $ preorder tree

         print $ inorder tree
         print $ postorder tree
         print $ levelorder tree</lang>

Output:

[1,2,4,7,5,3,6,8,9]
[7,4,2,5,1,8,6,9,3]
[7,4,5,2,8,9,6,3,1]
[1,2,3,4,5,6,7,8,9]

Icon and Unicon

Icon

<lang Icon>procedure main()

   bTree := [1, [2, [4, [7]], [5]], [3, [6, [8], [9]]]]
   showTree(bTree, preorder|inorder|postorder|levelorder)

end

procedure showTree(tree, f)

   writes(image(f),":\t")
   every writes(" ",f(tree)[1])
   write()

end

procedure preorder(L)

   if \L then suspend L | preorder(L[2|3])

end

procedure inorder(L)

   if \L then suspend inorder(L[2]) | L | inorder(L[3])

end

procedure postorder(L)

   if \L then suspend postorder(L[2|3]) | L

end

procedure levelorder(L)

   if \L then {
       queue := [L]
       while nextnode := get(queue) do {
           every put(queue, \nextnode[2|3])
           suspend nextnode
           }
       }

end</lang>

Output:

->bintree
procedure preorder:      1 2 4 7 5 3 6 8 9
procedure inorder:       7 4 2 5 1 8 6 9 3
procedure postorder:     7 4 5 2 8 9 6 3 1
procedure levelorder:    1 2 3 4 5 6 7 8 9
->

Unicon

This Icon solution works in Unicon. A solution that uses Unicon extensions has not been provided.

J

<lang J>preorder=: ]S:0 postorder=: ([:; postorder&.>@}.) , >@{. levelorder=: ;@({::L:1 _~ [: (/: #@>) <S:1@{::) inorder=: ([:; inorder&.>@("_`(1&{)@.(1<#))) , >@{. , [:; inorder&.>@}.@}.</lang>

Required example:

<lang J>N2=: conjunction def '(<m),(<n),<y' N1=: conjunction def '(<m),<n' L=: adverb def '<m'

N2=: conjunction def '(<m),(<n),<y' N1=: adverb def '(<m),<y' L=: adverb def '<m'

tree=: 1 N2 (2 N2 (4 N1 (7 L)) 5 L) 3 N1 6 N2 (8 L) 9 L</lang>

This tree is organized in a pre-order fashion

<lang J> preorder tree

1 2 4 7 5 3 6 8 9</lang>

post-order is not that much different from pre-order, except that the children must extracted before the parent.

<lang J> postorder tree

7 4 5 2 9 8 6 3 1</lang>

Implementing in-order is more complex because we must sometimes test whether we have any leaves, instead of relying on J's implicit looping over lists

<lang J> inorder tree

7 4 2 5 1 9 8 6 3</lang>

level-order can be accomplished by constructing a map of the locations of the leaves, sorting these map locations by their non-leaf indices and using the result to extract all leaves from the tree. Elements at the same level with the same parent will have the same sort keys and thus be extracted in preorder fashion, which works just fine.

<lang J> levelorder tree

1 2 3 4 5 6 7 8 9</lang>


For J novices, here's the tree instance with a few redundant parenthesis:

<lang J> tree=: 1 N2 (2 N2 (4 N1 (7 L)) (5 L)) (3 N1 (6 N2 (8 L) (9 L)))</lang>

Syntactically, N2 is a binary node expressed as m N2 n y. N1 is a node with a single child, expressed as m N2 y. L is a leaf node, expressed as m L. In all three cases, the parent value (m) for the node appears on the left, and the child tree(s) appear on the right. (And n must be parenthesized if it is not a single word.)

Java

Works with: Java version 1.5+

<lang java5>import java.util.Queue; import java.util.LinkedList; public class TreeTraverse {

   private static class Node<T>{
       public Node<T> left;
       public Node<T> right;
       public T data;
       
       public Node(T data){
           this.data = data;
       }
       public Node<T> getLeft() {
           return left;
       }
       public void setLeft(Node<T> left) {
           this.left = left;
       }
       public Node<T> getRight() {
           return right;
       }
       public void setRight(Node<T> right) {
           this.right = right;
       }
   }
   public static void preorder(Node<?> n){
       if (n != null) {
           System.out.print(n.data + " ");
           preorder(n.getLeft());
           preorder(n.getRight());
       }
   }
   
   public static void inorder(Node<?> n){
       if (n != null) {
           inorder(n.getLeft());
           System.out.print(n.data + " ");
           inorder(n.getRight());
       }
   }
   
   public static void postorder(Node<?> n){
       if (n != null){
           postorder(n.getLeft());
           postorder(n.getRight());
           System.out.print(n.data + " ");
       }
   }
   
   public static void levelorder(Node<?> n) {
       Queue<Node<?>> nodequeue = new LinkedList<Node<?>>();
       if (n != null)
           nodequeue.add(n);
       while (!nodequeue.isEmpty()) {
           Node<?> next = nodequeue.remove();
           System.out.print(next.data + " ");
           if (next.getLeft() != null) {
               nodequeue.add(next.getLeft());
           }
           if (next.getRight() != null) {
               nodequeue.add(next.getRight());
           }
       }
   }
   
   public static void main(String[] args){
       Node<Integer> one = new Node<Integer>(1);
       Node<Integer> two = new Node<Integer>(2);
       Node<Integer> three = new Node<Integer>(3);
       Node<Integer> four = new Node<Integer>(4);
       Node<Integer> five = new Node<Integer>(5);
       Node<Integer> six = new Node<Integer>(6);
       Node<Integer> seven = new Node<Integer>(7);
       Node<Integer> eight = new Node<Integer>(8);
       Node<Integer> nine = new Node<Integer>(9);
       one.setLeft(two);
       one.setRight(three);
       two.setLeft(four);
       two.setRight(five);
       three.setLeft(six);
       four.setLeft(seven);
       six.setLeft(eight);
       six.setRight(nine);
       
       preorder(one);
       System.out.println();
       inorder(one);
       System.out.println();
       postorder(one);
       System.out.println();
       levelorder(one);
       System.out.println();
   }

}</lang> Output:

1 2 4 7 5 3 6 8 9 
7 4 2 5 1 8 6 9 3 
7 4 5 2 8 9 6 3 1 
1 2 3 4 5 6 7 8 9 

JavaScript

inspired by Ruby <lang javascript>function BinaryTree(value, left, right) {

   this.value = value;
   this.left = left;
   this.right = right;

} BinaryTree.prototype.preorder = function(f) {this.walk(f,['this','left','right'])} BinaryTree.prototype.inorder = function(f) {this.walk(f,['left','this','right'])} BinaryTree.prototype.postorder = function(f) {this.walk(f,['left','right','this'])} BinaryTree.prototype.walk = function(func, order) {

   for (var i in order) 
       switch (order[i]) {
           case "this": func(this.value); break;
           case "left": if (this.left) this.left.walk(func, order); break;
           case "right": if (this.right) this.right.walk(func, order); break;
       }

} BinaryTree.prototype.levelorder = function(func) {

   var queue = [this];
   while (queue.length != 0) {
       var node = queue.shift();
       func(node.value);
       if (node.left) queue.push(node.left);
       if (node.right) queue.push(node.right);
   }

}

// convenience function for creating a binary tree function createBinaryTreeFromArray(ary) {

   var left = null, right = null;
   if (ary[1]) left = createBinaryTreeFromArray(ary[1]);
   if (ary[2]) right = createBinaryTreeFromArray(ary[2]);
   return new BinaryTree(ary[0], left, right);

}

var tree = createBinaryTreeFromArray([1, [2, [4, [7]], [5]], [3, [6, [8],[9]]]]);

print("*** preorder ***"); tree.preorder(print); print("*** inorder ***"); tree.inorder(print); print("*** postorder ***"); tree.postorder(print); print("*** levelorder ***"); tree.levelorder(print);</lang>

<lang logo>; nodes are [data left right], use "first" to get data

to node.left :node

 if empty? butfirst :node [output []]
 output first butfirst :node

end to node.right :node

 if empty? butfirst :node [output []]
 if empty? butfirst butfirst :node [output []]
 output first butfirst butfirst :node

end to max :a :b

 output ifelse :a > :b [:a] [:b]

end to tree.depth :tree

 if empty? :tree [output 0]
 output 1 + max tree.depth node.left :tree  tree.depth node.right :tree

end

to pre.order :tree :action

 if empty? :tree [stop]
 invoke :action first :tree
 pre.order node.left :tree :action
 pre.order node.right :tree :action

end to in.order :tree :action

 if empty? :tree [stop]
 in.order node.left :tree :action
 invoke :action first :tree
 in.order node.right :tree :action

end to post.order :tree :action

 if empty? :tree [stop]
 post.order node.left :tree :action
 post.order node.right :tree :action
 invoke :action first :tree

end to at.depth :n :tree :action

 if empty? :tree [stop]
 ifelse :n = 1 [invoke :action first :tree] [
   at.depth :n-1 node.left  :tree :action
   at.depth :n-1 node.right :tree :action
 ]

end to level.order :tree :action

 for [i 1 [tree.depth :tree]] [at.depth :i :tree :action]

end

make "tree [1 [2 [4 [7]]

                [5]]
             [3 [6 [8]
                   [9]]]]
 pre.order :tree [(type ? "| |)]  (print)
  in.order :tree [(type ? "| |)]  (print)
post.order :tree [(type ? "| |)]  (print)

level.order :tree [(type ? "| |)] (print)</lang>

OCaml

<lang ocaml>type 'a tree = Empty

            | Node of 'a * 'a tree * 'a tree

let rec preorder f = function

   Empty        -> ()
 | Node (v,l,r) -> f v;
                   preorder f l;
                   preorder f r

let rec inorder f = function

   Empty        -> ()
 | Node (v,l,r) -> inorder f l;
                   f v;
                   inorder f r

let rec postorder f = function

   Empty        -> ()
 | Node (v,l,r) -> postorder f l;
                   postorder f r;
                   f v

let levelorder f x =

 let queue = Queue.create () in
   Queue.add x queue;
   while not (Queue.is_empty queue) do
     match Queue.take queue with
         Empty        -> ()
       | Node (v,l,r) -> f v;
                         Queue.add l queue;
                         Queue.add r queue
   done

let tree =

 Node (1,
       Node (2,
             Node (4,
                   Node (7, Empty, Empty),
                   Empty),
             Node (5, Empty, Empty)),
       Node (3,
             Node (6,
                   Node (8, Empty, Empty),
                   Node (9, Empty, Empty)),
             Empty))

let () =

 preorder   (Printf.printf "%d ") tree; print_newline ();
 inorder    (Printf.printf "%d ") tree; print_newline ();
 postorder  (Printf.printf "%d ") tree; print_newline ();
 levelorder (Printf.printf "%d ") tree; print_newline ()</lang>

Output:

1 2 4 7 5 3 6 8 9 
7 4 2 5 1 8 6 9 3 
2 4 7 5 3 6 8 9 1 
1 2 3 4 5 6 7 8 9 

Oz

<lang oz>declare

 Tree = n(1
          n(2
            n(4 n(7 e e) e)
            n(5 e e))
          n(3
            n(6 n(8 e e) n(9 e e))
            e))
 fun {Concat Xs}
    {FoldR Xs Append nil}
 end
 fun {Preorder T}
    case T of e then nil
    [] n(V L R) then
       {Concat [[V]
                {Preorder L}
                {Preorder R}]}
    end
 end
 fun {Inorder T}
    case T of e then nil
    [] n(V L R) then
       {Concat [{Inorder L}
                [V]
                {Inorder R}]}
    end
 end
 fun {Postorder T}
    case T of e then nil
    [] n(V L R) then
       {Concat [{Postorder L}
                {Postorder R}
                [V]]}
    end
 end
 local
    fun {Collect Queue}
       case Queue of nil then nil
       [] e|Xr then {Collect Xr}
       [] n(V L R)|Xr then
          V|{Collect {Append Xr [L R]}}
       end
    end
 in
    fun {Levelorder T}
       {Collect [T]}
    end
 end

in

 {Show {Preorder Tree}}
 {Show {Inorder Tree}}
 {Show {Postorder Tree}}
 {Show {Levelorder Tree}}</lang>

PicoLisp

<lang PicoLisp>(de preorder (Node Fun)

  (when Node
     (Fun (car Node))
     (preorder (cadr Node) Fun)
     (preorder (caddr Node) Fun) ) )

(de inorder (Node Fun)

  (when Node
     (inorder (cadr Node) Fun)
     (Fun (car Node))
     (inorder (caddr Node) Fun) ) )

(de postorder (Node Fun)

  (when Node
     (postorder (cadr Node) Fun)
     (postorder (caddr Node) Fun)
     (Fun (car Node)) ) )

(de level-order (Node Fun)

  (for (Q (circ Node)  Q)
     (let N (fifo 'Q)
        (Fun (car N))
        (and (cadr N) (fifo 'Q @))
        (and (caddr N) (fifo 'Q @)) ) ) )

(setq *Tree

  (1
     (2 (4 (7)) (5))
     (3 (6 (8) (9))) ) )

(for Order '(preorder inorder postorder level-order)

  (prin (align -13 (pack Order ":")))
  (Order *Tree printsp)
  (prinl) )</lang>

Output:

preorder:    1 2 4 7 5 3 6 8 9 
inorder:     7 4 2 5 1 8 6 9 3 
postorder:   7 4 5 2 8 9 6 3 1 
level-order: 1 2 3 4 5 6 7 8 9 

PureBasic

Works with: PureBasic version 4.5+

<lang PureBasic>Structure node

 value.i
 *left.node
 *right.node

EndStructure

Structure queue

 List q.i()

EndStructure

DataSection

 tree:
 Data.s "1(2(4(7),5),3(6(8,9)))"

EndDataSection

Convenient routine to interpret string data to construct a tree of integers.

Procedure createTree(*n.node, *tPtr.Character)

 Protected num.s, *l.node, *ntPtr.Character
 
 Repeat
   Select *tPtr\c
     Case '0' To '9'
       num + Chr(*tPtr\c)
     Case '('
       *n\value = Val(num): num = ""
       *ntPtr = *tPtr + 1
       If *ntPtr\c = ',' 
         ProcedureReturn *tPtr
       Else
         *l = AllocateMemory(SizeOf(node))
         *n\left = *l: *tPtr = createTree(*l, *ntPtr)
       EndIf
     Case ')', ',', #Null
       If num: *n\value = Val(num): EndIf
       ProcedureReturn *tPtr
   EndSelect
   
   If *tPtr\c = ','
     *l = AllocateMemory(SizeOf(node)): 
     *n\right = *l: *tPtr = createTree(*l, *tPtr + 1)
   EndIf 
   *tPtr + 1
 ForEver

EndProcedure

Procedure enqueue(List q.i(), element)

 LastElement(q())
 AddElement(q())
 q() = element

EndProcedure

Procedure dequeue(List q.i())

 Protected element
 If FirstElement(q())
   element = q()
   DeleteElement(q())
 EndIf 
 ProcedureReturn element

EndProcedure

Procedure onVisit(*n.node)

 Print(Str(*n\value) + " ")

EndProcedure

Procedure preorder(*n.node) ;recursive

 onVisit(*n)
 If *n\left
   preorder(*n\left)
 EndIf 
 If *n\right
   preorder(*n\right)
 EndIf 

EndProcedure

Procedure inorder(*n.node) ;recursive

 If *n\left
   inorder(*n\left)
 EndIf 
 onVisit(*n)
 If *n\right
   inorder(*n\right)
 EndIf 

EndProcedure

Procedure postorder(*n.node) ;recursive

 If *n\left
   postorder(*n\left)
 EndIf 
 If *n\right
   postorder(*n\right)
 EndIf 
 onVisit(*n)

EndProcedure

Procedure levelorder(*n.node)

 Dim q.queue(1)
 Protected readQueue = 1, writeQueue, *currNode.node
 
 enqueue(q(writeQueue)\q(),*n) ;start queue off with root
 Repeat
   readQueue ! 1: writeQueue ! 1
   While ListSize(q(readQueue)\q())
     *currNode = dequeue(q(readQueue)\q())
     If *currNode\left
       enqueue(q(writeQueue)\q(),*currNode\left)
     EndIf 
     If *currNode\right
       enqueue(q(writeQueue)\q(),*currNode\right)
     EndIf 
     onVisit(*currNode)
   Wend
 Until ListSize(q(writeQueue)\q()) = 0

EndProcedure

If OpenConsole()

 Define root.node
 createTree(root,?tree)
 
 Print("preorder: ")
 preorder(root)
 PrintN("")
 Print("inorder: ")
 inorder(root)
 PrintN("")
 Print("postorder: ")
 postorder(root)
 PrintN("")
 Print("levelorder: ")
 levelorder(root)
 PrintN("")
 
 Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
 Input()
 CloseConsole()

EndIf</lang> Sample output:

preorder: 1 2 4 7 5 3 6 8 9
inorder: 7 4 2 5 1 8 6 9 3
postorder: 7 4 5 2 8 9 6 3 1
levelorder: 1 2 3 4 5 6 7 8 9

Python

<lang python>from collections import namedtuple from sys import stdout

Node = namedtuple('Node', 'data, left, right') tree = Node(1,

           Node(2,
                Node(4,
                     Node(7, None, None),
                     None),
                Node(5, None, None)),
           Node(3,
                Node(6,
                     Node(8, None, None),
                     Node(9, None, None)),
                None))

def printwithspace(i):

   stdout.write("%i " % i)

def preorder(node, visitor = printwithspace):

   if node is not None:
       visitor(node.data)
       preorder(node.left, visitor)
       preorder(node.right, visitor)

def inorder(node, visitor = printwithspace):

   if node is not None:
       inorder(node.left, visitor)
       visitor(node.data)
       inorder(node.right, visitor)

def postorder(node, visitor = printwithspace):

   if node is not None:
       postorder(node.left, visitor)
       postorder(node.right, visitor)
       visitor(node.data)

def levelorder(node, more=None, visitor = printwithspace):

   if node is not None:
       if more is None:
           more = []
       more += [node.left, node.right]
       visitor(node.data)
   if more:    
       levelorder(more[0], more[1:], visitor)

stdout.write(' preorder: ') preorder(tree) stdout.write('\n inorder: ') inorder(tree) stdout.write('\n postorder: ') postorder(tree) stdout.write('\nlevelorder: ') levelorder(tree) stdout.write('\n')</lang>

Sample output:

  preorder: 1 2 4 7 5 3 6 8 9 
   inorder: 7 4 2 5 1 8 6 9 3 
 postorder: 7 4 5 2 8 9 6 3 1 
levelorder: 1 2 3 4 5 6 7 8 9 

Ruby

<lang ruby>class BinaryTreeNode

 def initialize(value, left=nil, right=nil)
   @value, @left, @right = value, left, right
 end
 attr_reader :value, :left, :right
 def self.from_array(nested_list)
   value, left, right = nested_list
   if value 
     self.new(value, self.from_array(left), self.from_array(right))
   end
 end

 def walk_nodes(order, &block)
   order.each do |node|
     case node
     when :left  then left && left.walk_nodes(order, &block)
     when :self  then yield self
     when :right then right && right.walk_nodes(order, &block)
     end
   end
 end

 def each_preorder(&b)  ; walk_nodes([:self, :left, :right], &b) ; end
 def each_inorder(&b)   ; walk_nodes([:left, :self, :right], &b) ; end
 def each_postorder(&b) ; walk_nodes([:left, :right, :self], &b) ; end

 def each_levelorder
   queue = [self]
   until queue.empty?
     node = queue.shift
     yield node
     queue << node.left if node.left
     queue << node.right if node.right
   end
 end

end

root = BinaryTreeNode.from_array [1, [2, [4, 7], [5]], [3, [6, [8], [9]]]]

%w{each_preorder each_inorder each_postorder each_levelorder}.each {|mthd|

 printf "%-11s ", mthd[5..-1] + ':'
 root.send(mthd) {|node| print "#{node.value} "}
 puts

}</lang>

Output:

preorder:   1 2 4 7 5 3 6 8 9
inorder:    7 4 2 5 1 8 6 9 3
postorder:  7 4 5 2 8 9 6 3 1
levelorder: 1 2 3 4 5 6 7 8 9

Tcl

Works with: Tcl version 8.6

or

Library: TclOO

<lang tcl>oo::class create tree {

   # Basic tree data structure stuff...
   variable val l r
   constructor {value {left {}} {right {}}} {

set val $value set l $left set r $right

   }
   method value {} {return $val}
   method left  {} {return $l}
   method right {} {return $r}
   destructor {

if {$l ne ""} {$l destroy} if {$r ne ""} {$r destroy}

   }
   # Traversal methods
   method preorder {varName script {level 0}} {

upvar [incr level] $varName var set var $val uplevel $level $script if {$l ne ""} {$l preorder $varName $script $level} if {$r ne ""} {$r preorder $varName $script $level}

   }
   method inorder {varName script {level 0}} {

upvar [incr level] $varName var if {$l ne ""} {$l inorder $varName $script $level} set var $val uplevel $level $script if {$r ne ""} {$r inorder $varName $script $level}

   }
   method postorder {varName script {level 0}} {

upvar [incr level] $varName var if {$l ne ""} {$l postorder $varName $script $level} if {$r ne ""} {$r postorder $varName $script $level} set var $val uplevel $level $script

   }
   method levelorder {varName script} {

upvar 1 $varName var set nodes [list [self]]; # A queue of nodes to process while {[llength $nodes] > 0} { set nodes [lassign $nodes n] set var [$n value] uplevel 1 $script if {[$n left] ne ""} {lappend nodes [$n left]} if {[$n right] ne ""} {lappend nodes [$n right]} }

   }

}</lang> Note that in Tcl it is conventional to handle performing something “for each element” by evaluating a script in the caller's scope for each node after setting a caller-nominated variable to the value for that iteration. Doing this transparently while recursing requires the use of a varying ‘level’ parameter to upvar and uplevel, but makes for compact and clear code.

Demo code to satisfy the official challenge instance: <lang tcl># Helpers to make construction and listing of a whole tree simpler proc Tree nested {

   lassign $nested v l r
   if {$l ne ""} {set l [Tree $l]}
   if {$r ne ""} {set r [Tree $r]}
   tree new $v $l $r

} proc Listify {tree order} {

   set list {}
   $tree $order v {

lappend list $v

   }
   return $list

}

  1. Make a tree, print it a few ways, and destroy the tree

set t [Tree {1 {2 {4 7} 5} {3 {6 8 9}}}] puts "preorder: [Listify $t preorder]" puts "inorder: [Listify $t inorder]" puts "postorder: [Listify $t postorder]" puts "level-order: [Listify $t levelorder]" $t destroy</lang> Output:

preorder:    1 2 4 7 5 3 6 8 9
inorder:     7 4 2 5 1 8 6 9 3
postorder:   7 4 5 2 8 9 6 3 1
level-order: 1 2 3 4 5 6 7 8 9

UNIX Shell

Bash (also "sh" on most Unix systems) has arrays. We implement a node as an association between three arrays: left, right, and value. <lang bash>left=() right=() value=()

  1. node node#, left#, right#, value
  2. if value is empty, use node#

node() {

 nx=${1:-'Missing node index'}
 leftx=${2}
 rightx=${3}
 val=${4:-$1}
 value[$nx]="$val"
 left[$nx]="$leftx"
 right[$nx]="$rightx"

}

  1. define the tree

node 1 2 3 node 2 4 5 node 3 6 node 4 7 node 5 node 6 8 9 node 7 node 8 node 9

  1. walk NODE# ORDER

walk() {

 local nx=${1-"Missing index"}
 shift
 for branch in "$@" ; do
   case "$branch" in
     left)  if [[ "${left[$nx]}" ]];      then walk ${left[$nx]}  $@ ; fi ;;
     right) if [[ "${right[$nx]}" ]];     then walk ${right[$nx]} $@ ; fi ;;
     self)  printf "%d " "${value[$nx]}"  ;;
   esac
 done

}

apush() {

 local var="$1"
 eval "$var=( \"\${$var[@]}\" \"$2\" )"

}

showname() {

 printf "%-12s " "$1:"

}

showdata() {

 showname "$1"
 shift
 walk "$@"
 echo 

}

preorder() { showdata $FUNCNAME $1 self left right ; } inorder() { showdata $FUNCNAME $1 left self right ; } postorder() { showdata $FUNCNAME $1 left right self ; } levelorder() {

 showname 'level-order'
 queue=( $1 )
 x=0
 while [[ $x < ${#queue[*]} ]]; do
   value="${queue[$x]}"
   printf "%d " "$value"
   for more in "${left[$value]}" "${right[$value]}" ; do
     if -n "$more" ; then

apush queue "$more"

     fi
   done
   : $((x++))
 done
 echo 

}

preorder 1 inorder 1 postorder 1 levelorder 1</lang> The output: <lang bash>preorder: 1 2 4 7 5 3 6 8 9 inorder: 7 4 2 5 1 8 6 9 3 postorder: 7 4 5 2 8 9 6 3 1 level-order: 1 2 3 4 5 6 7 8 9</lang>

Ursala

Ursala has built-in notation for trees and is perfect for whipping up little tree walking functions. This source listing shows the tree depicted above declared as a constant, followed by declarations of four functions applicable to trees of any type. The main program applies all four of them to the tree and makes a list of their results, each of which is a list of natural numbers. The compiler directive #cast %nLL induces the compile-time side effect of displaying the result on standard output as a list of lists of naturals. <lang Ursala>tree =

1^:<

  2^: <4^: <7^: <>, 0>, 5^: <>>,
  3^: <6^: <8^: <>, 9^: <>>, 0>>

pre = ~&dvLPCo post = ~&vLPdNCTo in = ~&vvhPdvtL2CTiQo lev = ~&iNCaadSPfavSLiF3RTaq

  1. cast %nLL

main = <.pre,in,post,lev> tree</lang> output:

<
   <1,2,4,7,5,3,6,8,9>,
   <7,4,2,5,1,8,6,9,3>,
   <7,4,5,2,8,9,6,3,1>,
   <1,2,3,4,5,6,7,8,9>>